首页> 外文OA文献 >A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers
【2h】

A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers

机译:基于压力的半隐式时空不连续Galerkin方法   在交错的非结构网格上解决可压缩的问题   所有马赫数的Navier-stokes方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a new arbitrary high order accurate semi-implicit space-timediscontinuous Galerkin (DG) method for the solution of the two and threedimensional compressible Euler and Navier-Stokes equations on staggeredunstructured curved meshes. The method is pressure-based and semi-implicit andis able to deal with all Mach number flows. In our scheme, the discretepressure is defined on the primal grid, while the discrete velocity field andthe density are defined on a face-based staggered dual grid. All convectiveterms are discretized explicitly, while the pressure terms appearing in themomentum and energy equation are discretized implicitly. Substitution of themomentum equation into the energy equation yields a linear system for thescalar pressure as the only unknown. The enthalpy and the kinetic energy aretaken explicitly and are then updated using a simple Picard procedure. Thanksto the use of a staggered grid, the final pressure system is a very sparseblock five-point system for three dimensional problems. The viscous terms andthe heat flux are also discretized making use of the staggered grid by definingthe viscous stress tensor and the heat flux vector on the dual grid, whichcorresponds to the use of a lifting operator on the dual grid. The time step ofour new numerical method is limited by a CFL condition based only on the fluidvelocity and not on the sound speed. This makes the method particularlyinteresting for low Mach number flows. Finally, a very simple combination ofartificial viscosity and the a posteriori MOOD technique allows to deal withshock waves and thus permits also to simulate high Mach number flows. We showcomputational results for a large set of two and three-dimensional benchmarkproblems, including both low and high Mach number flows and using polynomialapproximation degrees up to p=4.
机译:我们提出了一种新的任意高阶精确半隐式时空不连续Galerkin(DG)方法,用于求解交错非结构弯曲网格上的二维和三维可压缩Euler和Navier-Stokes方程。该方法基于压力且半隐式,并且能够处理所有马赫数流。在我们的方案中,离散压力定义在原始网格上,而离散速度场和密度定义在基于面的交错双网格上。所有对流项都被明确离散,而动量和能量方程中出现的压力项则被隐式离散。将动量方程代入能量方程会产生标量压力的线性系统,这是唯一未知数。焓和动能被明确地获取,然后使用简单的皮卡德程序进行更新。由于使用了交错的网格,最终的压力系统是解决三维问题的非常稀疏的五点系统。通过在双网格上定义粘性应力张量和热通量向量,还可以通过使用交错网格来离散粘性项和热通量,这对应于在双网格上使用提升算子。我们的新数值方法的时间步长受CFL条件的限制,该条件仅基于流体速度而不基于声速。这使得该方法对于低马赫数流特别有趣。最后,人工粘度和后验MOOD技术的非常简单的组合可以处理冲击波,因此还可以模拟高马赫数流。我们显示了一组大型的二维和三维基准问题的计算结果,包括低和高马赫数流,并使用了高达p = 4的多项式逼近度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号